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Abstract In this paper, we review the recently formulated quantum laws of motion and
provide new observations. We also extend these laws to higher dimensions. By applying in
two dimensions the obtained relations to charge submitted to an electric central potential,
we decide between these laws. Furthermore, we extend the selected law to the relativistic
case in higher dimensions.

Keywords Quantum law of motion · Quantum potential · Higher dimensions · Relativistic
extension

1 Introduction

Recently, Matone suggested that the quantum potential generates the gravitational potential
[1]. This hypothesis was the logical result of the quantum mechanics formulation based
on the equivalence postulate [2–4]. In this formulation, it is the quantum Hamilton–Jacobi
equation (QHJE) which is investigated. In this context, it is shown that tunnel effect, energy
quantization [4, 5] and band structure for the energy spectrum in the Krönig–Penney model
[6] directly follow from the QHJE without appealing to the usual axiomatic interpretation
of the wave function. Another interesting feature of the QHJE is the fact that the quantum
potential, which represents an additional term compared with the classical Hamilton–Jacobi
equation (CHJE), can be seen as a term which guarantees the invariance of the Hamilton–
Jacobi equation under any coordinate transformation [4]. This reminds us of the role played
by the gravitational field in general relativity. In this paper, we will review the different
quantum laws of motion based on the QHJE. Among them, we can cite the Bohm approach
[7–10] for which Einstein raised a serious objection in the case where the system is described
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by a real wave function. Einstein’s criticism was answered by taking the wave function in
the form [2–4, 11]

φ = R

[
α exp

(
i
S0

�

)
+ β exp

(
−i

S0

�

)]
, (1)

where α and β are complex constants. We can also cite Floyd’s proposal for which trajecto-
ries are obtained by using Jacobi’s theorem [12, 13]. However, in this formulation, it seems
that there is some confusion in the definition of time parametrization [14–16]. We essentially
devote our discussion to the quantum laws established in [14] and [17].

The paper is organized as follows. In Sect. 2, we review some features of the Quantum
Laws of motion proposed in [14] and [17]. In Sect. 3, we extend these laws to higher dimen-
sions. In Sect. 4, we apply in two dimensions the obtained relations to hydrogen atom and
then decide between them. In Sect. 5, we extend the selected law to the relativistic case in
higher dimensions. Section 6 is devoted to conclusion.

2 The Quantum Laws of Motion

From the one-dimensional stationary QHJE

1

2m

(
∂S0

∂x

)2

+ V (x) − E

= �
2

4m

[
3

2

(
∂S0

∂x

)−2(
∂2S0

∂x2

)2

−
(

∂S0

∂x

)−1(
∂3S0

∂x3

)]
, (2)

and by appealing to the coordinate transformation [4, 18]

x → x̂
/∂x̂

∂x
= ∂S0/∂x√

2m(E − V (x))
, (3)

after which the above QHJE takes the classical form,

1

2m

(
∂Ŝ0(x̂)

∂x̂

)2

+ V̂ (x̂) = Ê, (4)

it is established in [14] that

1

2

∂S0

∂x
ẋ + V (x) = E. (5)

This law, with the use of (2), has allowed to establish the Quantum Newton Law [14].
We first observe that relation (5) itself constitutes a law of motion. In fact, by using in (5)
the solution [11, 14, 16] of (2)

S0 = � arctan

[
a

φ1

φ2
+ b

]
+ �λ, (6)

where (φ1, φ2) is a couple of two real independent solutions of the Schrödinger equation
(SE), −�

2φ′′/2m + V φ = Eφ, and (a, b,λ) are real integration constants satisfying the
condition a �= 0, we obtain a first order differential equation representing the quantum law
of motion [16].
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Let us now examine the different formulations used to derive relation (5). In [14], we can
easily see that (5) is obtained from the Lagrangian

L(x, ẋ, a, b) = 1

2
mẋ2

(
∂x̂

∂x

)2

− V (x). (7)

The non-classical integration constants a and b, contained in x̂, played the role of hidden
parameters. Taking into account relation (3), L and then the resulting quantum law of mo-
tion, depend also on the energy E. This constant is appeared also after the integration of the
obtained equation of motion. It follows that the integration constants are not independent
and some of them form a redundant subset [19]. Although, this problem is gone round in
[15] by using in the Lagrangian formulation the coordinate x̂, L = L(x̂, ˙̂x), the fact remains
that this formulation is not coherent when we use the coordinate x.

An analogous remark can be made also in the Hamiltonian formulation. In fact, relation
(5) is reproduced in [15] by using the Hamiltonian

H = P 2

2m

(
∂x

∂x̂

)2

+ V (x), (8)

where P = ∂S0/∂x is the conjugate momentum. When the canonical equation was applied
in [15], it is not taken into account the dependence of the factor (∂x/∂x̂)2 on E and conse-
quently on H . This observation was pointed out in the relativistic case in [20]. In order to
remedy this weakness, let us rewrite (8) in the following form

P = √
2m(H − V )

∂x̂

∂x
. (9)

With the use of (3) and (6), we can express ∂x̂/∂x and by applying then (9) we can deduce P .
Finally, the quantum law of motion can be derived from the canonical equation

ẋ = ∂H

∂P
=

(
∂P

∂H

)−1

. (10)

This equation leads to the same trajectories as those obtained from Jacobi’s theorem, t − t0 =
∂S0/∂E, as used by Floyd [12, 13]. In fact, taking the derivative with respect to x of this
last relation, we obtain

dt

dx
= ∂2S0

∂x∂E
= ∂2S0

∂E∂x
= ∂P

∂E
= ∂P

∂H
, (11)

which is equivalent to (10). Consequently, when we take into account the dependence on
E of x̂, as in Floyd’s approach, the resulting trajectories will depend on the choice of the
solutions of the SE [15] that we will use in the reduced action in order to express ∂x̂/∂x.
For the moment, the only way to obtain a coherent Hamiltonian formulation leading to (5)
is to use the coordinate system (x̂) and to define the conjugate momentum as P̂ = ∂Ŝ0/∂x̂.
The transformation to the coordinate system (x) must not be performed until the canonical
equation is applied.

The last observation that we make about relation (5) is pointed out in [17] and concerns
turning points. At the points where E = V (x), since ∂S0/∂x never has a vanishing value,
we can show from (5) that all the higher temporal derivatives of x take a vanishing value:
ẋ = 0, ẍ = 0, . . . . Thus, when the particle gets to one of these points, it can never leave it.
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At first glance, the above three observations plead for a new law of motion. That’s what
is done in [17] where it is proposed a new approach consisting in the construction of a
Lagrangian from which we have reproduced the QHJE. This approach was based on the
following sensible hypothesis:

1. The Hamilton’s principal function is an integral of a Lagrangian.
2. The Lagrangian is a difference between a kinetic term depending on (x, ẋ, ẍ, ˙̈x) and

containing the quantum potential, and an external potential.
3. The resulting equation of motion is a fourth order one, in accordance with the one-

dimensional QHJE.

In the context of these hypothesis, it is shown that in order to reach the QHJE from the
constructed Lagrangian, the condition

∂S0

∂x
= mẋ, (12)

recalling the Bohm relation, is required. Relation (12) represented the new law of motion and
it allowed with the use of (2) to establish the modified quantum Newton law [17]. Although,
(12) reminds us of the classical mechanics, we stress that it describes the quantum motion
because ∂S0/∂x represents the solution of the QHJE, (2). At first glance, this model seems
attractive. However, as we will see in Sect. 4, (12) leads to a deadlock when we apply its
two-dimensional version to the motion of a charge submitted to an electric central potential.

3 Extension to Higher Dimensions

Although relation (12) has the same form as Bohm’s law of motion, it is fundamentally
different. In fact, in contrast to Bohm’s theory, the reduced action S0 in (12) is related to the
wave function by (1) and therefore it never takes a constant value even in the case where the
wave function is real, up to a constant phase factor. As in Bohm’s theory, the extension of
relation (12) to three dimensions can be sensibly assumed as

mẋ = ∂S0

∂x
, mẏ = ∂S0

∂y
, mż = ∂S0

∂z
. (13)

Concerning relation (5), before we extend it to higher dimensions, it is instructive to
reproduce it in one dimension with a novel approach which we will use to perform this
extension.

As Ŝ0(x̂) = S0(x), V̂ (x̂) = V (x) and Ê = E [4, 14, 18], relation (4) can be written as

1

2m

(
∂S0(x)

∂x

)2(
∂x

∂x̂

)2

+ V (x) = E. (14)

On the other hand, if we use the coordinate system (x̂) in which the quantum potential is
canceled, the conjugate momentum takes the classical form

∂Ŝ0

∂x̂
= m ˙̂x, (15)

from which we deduce that

∂S0

∂x

(
∂x

∂x̂

)2

= mẋ. (16)
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Substituting this expression in (14), we straightforwardly get to relation (5).
In what follows, we will use Einstein’s convention for repeated indexes. Let us consider

in a D-dimensional space the QHJE

δij 1

2m

∂S0

∂xi

∂S0

∂xj
− δij �

2

2mR

∂2R

∂xi∂xj
+ V (xi) = E, (17)

where the functions R and S0 satisfy the continuity equation

δij ∂

∂xi

(
R2 ∂S0

∂xj

)
= 0, (18)

and δij is the Kronecker symbol. In the coordinate system (x̂i) in which the quantum poten-
tial is canceled, the QHJE takes the classical form

δij 1

2m

∂Ŝ0

∂x̂i

∂Ŝ0

∂x̂j
+ V̂ (x̂i) = Ê. (19)

As Ŝ0(x̂
i) = S0(x

i), V̂ (x̂i) = V (xi) and Ê = E, relation (19) turns out to be

δij 1

2m

∂S0

∂xl

∂xl

∂x̂i

∂S0

∂xk

∂xk

∂x̂j
+ V (xi) = E. (20)

As in general relativity, we assume that the coordinate system (x̂i), in which the laws of
motion take classical forms, is locally flat. Therefore, we have

∂Ŝ0

∂x̂i
= m

dx̂i

dt
= mδil

dx̂l

dt
, (21)

from which we deduce that

∂S0

∂xl

∂xl

∂x̂i
= mδil

∂x̂l

∂xn
ẋn. (22)

Multiplying each side of this last relation by δij ∂xk/∂x̂j , we obtain

δij ∂S0

∂xl

∂xl

∂x̂i

∂xk

∂x̂j
= mδij δil

∂xk

∂x̂j

∂x̂l

∂xn
ẋn = mδ

j

l

∂xk

∂x̂j

∂x̂l

∂xn
ẋn = m

∂xk

∂x̂j

∂x̂j

∂xn
ẋn

= m
∂xk

∂xn
ẋn = mδk

nẋ
n = mẋk. (23)

Using this result in (20), we find

1

2

∂S0

∂xk
ẋk + V (xi) = E. (24)

This represents the higher dimension version of relation (5). Although, relation (24) works
in classical mechanics (∂Sclas

0 /∂xk = mẋk), it describes the quantum motion because in (24)
∂S0/∂xk is the solution in higher dimensions of the QHJE, already investigated in [21].
The problem of the immobility of particles at turning points disappears. In fact, when the
space dimension is higher than one, we cannot show from (24) that the derivatives ẋk, ẍk, . . .

(k = 1,2, . . . ,D) take simultaneously vanishing values.
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4 Hydrogen Atom in Two Dimensions

In this section, let us apply in two dimensions the laws of motion (13) and (24) to the
hydrogen atom for which the potential is

V (r) = −e2

r
, (25)

where e2 = q2/4πε0, q being the absolute value of the electron charge. By using polar coor-
dinates (r, θ) and writing ψ(r, θ) = R(r)Θ(θ), it is well known that Schrödinger’s equation

− �
2

2m
ψ + V (r)ψ = Eψ, (26)

leads to the two following separated relations

d2R

dρ2
+ 1

ρ

dR

dρ
+

[
2

ρ
− l2

ρ2
− α2

]
R = 0, (27)

and

d2Θ

dθ2
+ l2Θ = 0, (28)

where l is an integration constant, ρ = r/a0 and α2 = −E/EI , a0 and EI being respec-
tively Bohr’s atomic radius (a0 = �

2/me2) and the ionization energy (EI = me4/2�
2) of the

Hydrogen atom. Choosing for (28) as independent real solutions the two following functions

Θ1 = cos lθ, Θ2 = sin lθ, (29)

and imposing the conditions

Θ1(θ) = Θ1(θ + 2π), Θ2(θ) = Θ2(θ + 2π), (30)

we deduce that l must be an integer number. In [22, 23], it is shown that a physical solution
for (27) is

R1(ρ) = ρ |l| exp(−αρ)L
2|l|
n−|l|(2αρ), (31)

where Lk
s are the generalized Laguerre polynomials, n = 0,1,2,3 . . . is the principal quan-

tum number (−n ≤ l ≤ n) and

α = 1

n + 1/2
. (32)

This last relation leads to

E(n) ≡ En = − EI

(n + 1/2)2
. (33)

A second real independent solution R2(ρ) for (27) can be derived by using the Wronskian
W(R1,R2) [24]

R2(ρ) = R1(ρ)

∫ exp[− ∫
dρ

ρ
]

R2
1(ρ)

dρ = R1(ρ)

∫
dρ

ρR2
1(ρ)

. (34)
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As shown in [21], the reduced action in two dimensions is

S0 = � arctan

[
R1Θ1 + ν2R1Θ2 + ν3R2Θ1 + ν4R2Θ2

μ1R1Θ1 + μ2R1Θ2 + μ3R2Θ1 + R2Θ2

]
+ �λ, (35)

where (ν2, ν3, ν4,μ1,μ2,μ3, λ) are real integration constants. For the ground state (n = 0,
l = 0), by (32) we have α = 2. As L0

0 = 1 and ρ = r/a0, with the use of (29), (31) and (34),
we deduce that

Θ1 = 1, Θ2 = 0, (36)

and

R1 = exp

(
−2r

a0

)
, R2 = exp

(
−2r

a0

)∫ r

r0

exp(4r ′/a0)

r ′ dr ′. (37)

Note that the lower boundary r0 can be arbitrary chosen. Therefore, in order to avoid the
singular point r ′ = 0 in (37), we choose r0 positive. Note also that with suitable integration
boundaries, the integral in (37) can be identified to the exponential integral Ei(r) defined as
the Cauchy’s principal value of

Ei(x) =
∫ x

−∞

exp(t)

t
dt (x > 0). (38)

It follows that for the ground state, expression (35) reduces to

S0 = � arctan

[
R1 + ν3R2

μ1R1 + μ3R2

]
+ �λ, (39)

where R1(r) and R2(r) are given in (37).
In polar coordinates, the law of motion (13) takes the form

∂S0

∂r
= mṙ,

∂S0

∂θ
= mr2θ̇ , (40)

while the law of motion (24) turns out to be

ṙ
∂S0

∂r
+ θ̇

∂S0

∂θ
= 2[E − V (r)]. (41)

Substituting (39) in (40), we get to

�(μ1ν3 − μ3)

[
2

a0
exp

(
−4r

a0

)∫ r

r0

exp(4r ′/a0)

r ′ dr ′ + 1

r
exp

(
2r

a0

)]
= mṙH(r), (42)

and

mr2θ̇ = 0, (43)

where H(r) = (R1 +ν3R2)
2 + (μ1R1 +μ3R2)

2. However, with the use of (25) and (33), and
by substituting (39) in (41), we get to

�(μ1ν3 − μ3)ṙ

[
2

a0
exp

(
−4r

a0

)∫ r

r0

exp(4r ′/a0)

r ′ dr ′ + 1

r
exp

(
2r

a0

)]

= 2H(r)

[
−2me4

�2
+ e2

r

]
. (44)
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Relation (43) results from (13) and indicates that θ is constant. This result is unacceptable
and forced us to abandon the law of motion (13). Relation (44) results from (24) and does
not allow to determine θ . This indicates that relation (24) does not ensure a complete de-
scription of the quantum motion when the number of degrees of freedom is higher than one.
However, this is not sufficient to reject relation (24). In fact, even in classical mechanics, it
is well-known that the law of energy conservation does not allow to determine completely
the motion except for systems of one degree of freedom. This feature encourage us to pay
attention to relation (5) and its extended version (24).

5 The Relativistic Case

Before we establish the relativistic version of (24), it is instructive to remind us of the fol-
lowing main points:

1. When the coordinate system (x̂) is used to apply Jacobi’s theorem [14] or to express the
Lagrangian in order to obtain the equation of motion [15], relation (5) is derived without
any mathematical ambiguity. It is also the case for the Hamiltonian formulation.

2. In the coordinate system (x̂), the QHJE and the other motion laws take the classical
forms meaning that the choice of this system is made in such a way as to cancel the
effect of the quantum potential. This strongly reminds us of the equivalence principle of
general relativity which allows to admit the existence of a coordinate system in which
the gravitational field is locally canceled.

3. Compared to the CHJE, the quantum potential is an additional term which guarantees
the covariance of the QHJE [4]. The same role is also played by the gravitational field in
general relativity.

4. The gravitational potential is generated by the quantum potential [1].

Unquestionably, the above remarks plead in favor of (5) and (24). Consequently, if we would
like to continue to believe in the link between the quantum potential and the gravitational
field, we have a further argument to abandon the quantum law (12) and also the hypoth-
esis, though attractive, enumerated in Sect. 2 and which allowed in [17] to establish (12).
Concerning the reservations expressed in Sect. 2 about (5), we can make the following obser-
vations. The absence for the moment of a coherent Lagrangian or Hamiltonian formulation
in any system coordinate, except in (x̂) in which the quantum potential is canceled, must
not imply the rejection of the approach. With regard to the particle immobility at turning
points, pointed out in [17], this problem appears only in one dimension. As we have seen in
Sect. 3, this problem disappears in realistic models for which the space dimension is higher
than one.

Let us now establish the relativistic version of (24). In the context of the equivalence
postulate, the D-dimensional stationary relativistic QHJE for spinless system reads [25]

δij 1

2m

∂S0

∂xi

∂S0

∂xj
− δij �

2

2mR

∂2R

∂xi∂xj
+ m2c4 − [E − V (xi)]2

2mc2
= 0, (45)

where the functions R and S0 satisfy the continuity equation

δij ∂

∂xi

(
R2 ∂S0

∂xj

)
= 0. (46)
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The summation on i and j does not concern the time component [4]. In the coordinate
system (x̂i) in which the quantum potential is canceled, the relativistic QHJE takes the
classical form

δij 1

2m

∂Ŝ0

∂x̂i

∂Ŝ0

∂x̂j
+ m2c4 − [Ê − V̂ (x̂i)]2

2mc2
= 0. (47)

As Ŝ0(x̂
i) = S0(x

i), V̂ (x̂i) = V (xi) and Ê = E, relation (47) turns out to be

δij 1

2m

∂S0

∂xl

∂xl

∂x̂i

∂S0

∂xk

∂xk

∂x̂j
+ m2c4 − [E − V (xi)]2

2mc2
= 0. (48)

On the other hand, the coordinate system (x̂i) being locally flat, the conjugate momentum
takes the following classical relativistic form

∂Ŝ0

∂x̂i
= m

dx̂i

dτ
= mδil

dx̂l

dτ
, (49)

where dτ is an element of the proper time associated to the particle. Relation (49) can be
obtained from (21) by substituting dt by dτ . Thus, in the same manner as in Sect. 3, we can
show from (49) that

δij ∂S0

∂xl

∂xl

∂x̂i

∂xk

∂x̂j
= m

dxk

dτ
. (50)

Using this result in (48), we find

∂S0

∂xk

dxk

dτ
+ m2c4 − [E − V (xi)]2

mc2
= 0. (51)

This represents the relativistic quantum law of motion in higher dimensions. Although, rela-
tion (51) works in classical relativistic mechanics (∂S

clas/relat
0 /∂xk = mdxk/dτ ), it describes

the relativistic quantum motion because in (51) ∂S0/∂xk represents the solution of the rela-
tivistic QHJE, (45). As in the non-relativistic case [21], one can check that the solutions of
(45) and (46) are

S0 = � arctan

(
φ1

φ2

)
+ �l, (52)

and

R = k

√
φ2

1 + φ2
2 , (53)

where φ1 and φ2 are two real independent solutions of the stationary Klein–Gordon equation,

− �
2

2m
φ + m2c4 − [E − V (xi)]2

2mc2
φ = 0, (54)

l and k arbitrary integration constants, and  the D-dimensional Laplacian. We mention
that in the separated variable case, it is possible to make explicit in (52) all the integration
constants, as in the non-relativistic case [21].

Finally, we indicate that in one dimension, relation (51) reproduces the same result as the
one obtained in [20]. In fact, (51) allows us to write

∂S0

∂x

dx

dτ
+ m2c4 − [E − V (x)]2

mc2
= 0. (55)
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Multiplying by dτ/dt , we have

∂S0

∂x

dx

dt
+ m2c4 − [E − V (x)]2

mc2

dτ

dt
= 0. (56)

On the other hand, the time component being not concerned by the coordinate transforma-
tion (t̂ = t) [4], in the system (x̂) where the space is locally flat, we have

dτ 2 = dt2 − 1

c2
dx̂2 = dt2 − 1

c2

(
∂x̂

∂x

)2

dx2. (57)

By substituting in this last relation the expression

(
∂x̂

∂x

)2

= c2 (∂S0/∂x)2

[E − V (x)]2 − m2c4
, (58)

which defines the transformation x → x̂ allowing to cancel the quantum potential [20], we
get to

(
dτ

dt

)2

= [E − V (x)]2 − m2c4 − ẋ2(∂S0/∂x)2

[E − V (x)]2 − m2c4
. (59)

Using this expression in (56), we reproduce the one-dimensional relativistic quantum law of
motion,

∂S0

∂x

dx

dt
+ m2c4 − [E − V (x)]2

E − V (x)
= 0, (60)

already obtained in [20].

6 Conclusion

Before summarizing the main results of the present investigation, let us come back to the
quantum law (5) established in [14]. Despite its present insufficiencies observed in Sect. 2,
we think that it is useful to investigate this law and its extended versions in more detail for
the following reasons.

1. The problem of the particle immobility at turning points is specific to the one-
dimensional space. In a realistic model, we cannot ignore the other dimensions of the
space and this problem disappears.

2. The fact of the absence for the moment of a coherent Lagrangian or Hamiltonian formu-
lation which works in any coordinate system does not mean that law (5) must be rejected.
In fact, in the same manner as for the law of motion in general relativity, relation (5) is
rigorously established in the particular system (x̂) in which the quantum potential is can-
celed. The transformation from (x̂) to another system (x), which can be for example the
laboratory frame, is performed after the equation of motion is obtained in the system (x̂).

3. Another interesting feature of (5) is the nodal structure of the quantum trajectories which
follow from it. In fact, it is shown in [16] that to each classical trajectory there is a family
of quantum trajectories which all pass through some points constituting nodes and be-
longing to the classical trajectory. In addition, there is an interesting relation between de
Broglie’s wavelength and the length separating adjacent nodes which become infinitely
close in the limit � → 0. Also, it is shown [16] that in the classical limit all the quantum
trajectories tend to be identical to the classical one.



1078 Int J Theor Phys (2008) 47: 1068–1078

Furthermore, the manner in which the quantum law (5) is derived allows to establish
a parallel between the postulate equivalence of quantum mechanics and the one of general
relativity. This suggests that relation (5) and its extended versions may play an important
role in the search for a possible link, already investigated by Matone [1] and Carroll [26],
between the quantum potential and the gravitational potential.

To summarize, it is in this spirit that we have performed in Sects. 3 and 5 the extension to
higher dimensions of relation (5) respectively in the non-relativistic case and the relativistic
one. We have also applied its two-dimensional version in the non-relativistic case to the
hydrogen atom. An interesting question is how to complete relations (24) and (51) in order
to describe in its entirety the quantum motion in any dimension.
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